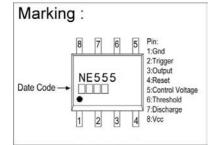
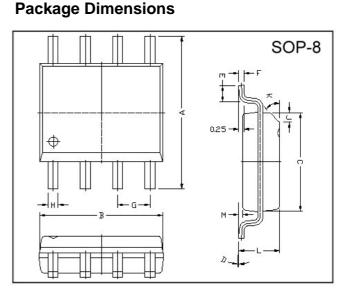


Single Timer

RoHS Compliant Product

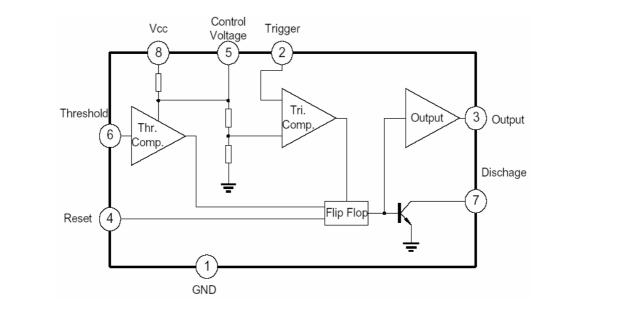
Description


The SPNE555 is a highly stable timer IC that can be operated in astable mode and monostable mode. For monostable mode: time delay is controlled by one external and one capacitor. For stable mode: frequency and duty cycle are accurately controlled with two external resistors and one capacitor.


Features

- High current driver capability (=200mA)
- Adjustable duty cycle
- \bullet timing form μsec to hours
- turn off time less than 2µsec

Applications


- Precision timing
- Pulse generation
- Time delay generation

REF.	Millimeter		REF.	Millimeter		
	Min.	Max.	NEF.	Min.	Max.	
А	5.80	6.20	М	0.10	0.25	
В	4.80	5.00	Н	0.35	0.49	
С	3.80	4.00	L	1.35	1.75	
D	0°	8°	J	0.375 REF.		
E	0.40	0.90	K	45°		
F	0.19	0.25	G	1.27 TYP.		

Block Diagram and Simplified Application & Pin Configuration

Single Timer

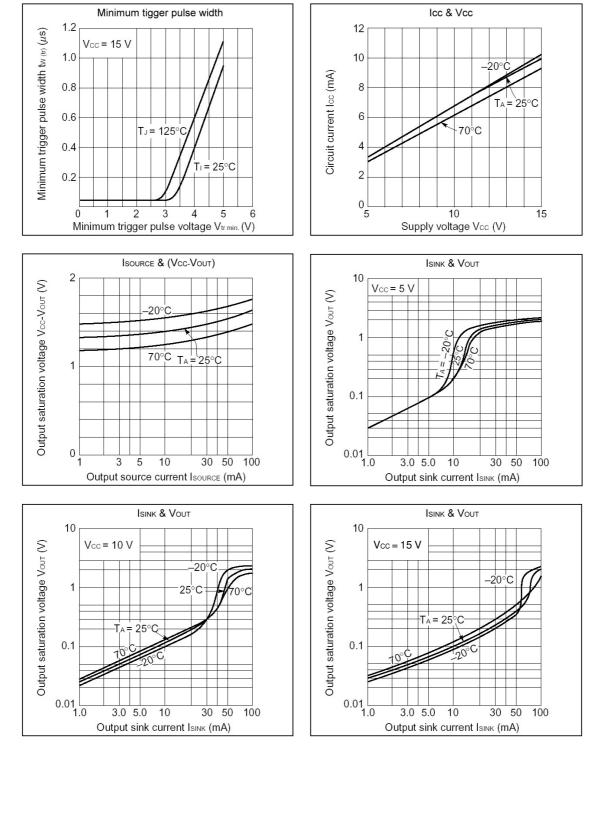
Absolute Maximum Ratings (Ta = 25 °C)

Parameter	Symbol	Value	Units
Supply Voltage	V _{cc}	16	V
Differential Input Voltage	l _o	200	mA
Input Voltage	T _{lead}	300	С°
Power Dissipation	PD	440	mW
Opearting, Storage Temperature	T _{opr} , T _{stg}	0~70, -65~150	°C

Electrical Characteristics (Ta = 25 °C, V_{CC} = 5 ~ 15V)

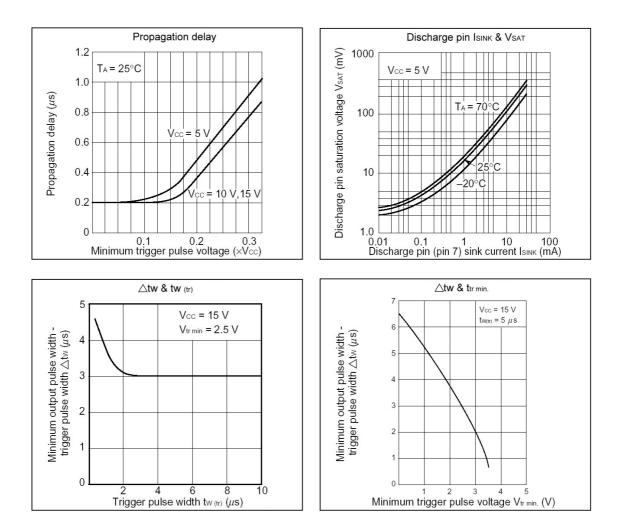
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Supply Voltage	V _{cc}		4.5	-	16	V
Current out of		V_{CC} = 5V, RL = ∞	-	3	6	mA
Supply Current (Note 1)	I _{CC}	V_{CC} = 15V, RL = ∞	-	10	15	mA
		Timing Error (monostable)	•			1
Initial Accurary (Note 1)	A _{CCUR}	$R_A = 1k \sim 100k\Omega$	-	1.0	-	%
Drift with Temperature	Δt/ΔT	$C = 0.1 \ \mu F$	-	50	-	ppm/°C
Drift with Supply Voltage	Δt/ΔV _{cc}		-	0.1	-	%/V
		Timing Error (astable)				
Initial Accurary (Note 1)	A _{CCUR}	$R_A = 1k \sim 100k\Omega$	-	2.25	-	%
Drift with Temperature	∆t/∆T	C = 0.1 μF	-	150	-	ppm/°C
Drift with Supply Voltage	$\Delta t / \Delta V_{CC}$		-	0.3	-	%/V
Control Voltage	Vc	$V_{CC} = 15V$	9.0	10.0	11.0	V
5	•0	$V_{CC} = 5V$	2.6	3.33	4.0	
Threshold Voltage	V _{TH}	$V_{CC} = 15V$	9.2	10.0	10.8	
		$V_{CC} = 5V$	3.1	3.33	3.55	
Threshold Current (Note 3)	I _{TH}		-	0.1	0.25	μΑ
Trigger Voltage	V _{tr} -	$V_{CC} = 5V$	1.1	1.67	2.2	V
nigger voltage		$V_{CC} = 15V$	4.5	5	5.6	
Trigger Current	l _{tr}	$V_{tr} = 0$	-	-	2.0	μΑ
Reset Voltage	V _{rst}		0.4	0.7	1.0	V
Reset Current	I _{rst}		-	0.1	0.4	mA
Low Output Voltage	V _{oL}	V_{CC} = 15V, I_{sink} = 10mA	-	0.06	0.25	V
		$V_{CC} = 15V$, $I_{sink} = 50mA$	-	0.3	0.75	
		$V_{CC} = 5V, I_{sink} = 5mA$	-	0.05	0.35	
High Output Voltage	V _{он}	V_{CC} = 15V, I_{sink} = 200mA	-	12.5	-	V
		V_{CC} = 15V, I_{sink} = 100mA	12.75	13.3	15	
		$V_{CC} = 5V$, $I_{sink} = 100mA$	2.75	3.3	5	
Reset Time of Output	t _R		-	100	-	nSec
Fall Time of Output	t _F		-	100	-	nSec
Discharge leakage Current	I _{LKG}		-	20	100	nA

Note 1: Supply current when output is high typically 1 mA less at $V_{CC} = 5V$

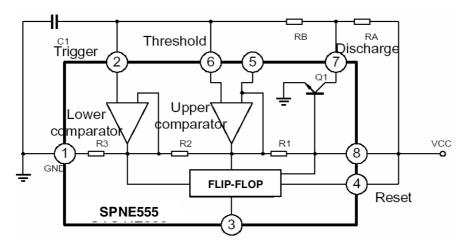

Note 2: Tested at V_{CC} = 5V and V_{CC} = 15V.

Note 3: This will determine the maximum value or RA+RB for 15V operation, the maximum total is R=20M Ω , and for 5V operation the maximum total is R=6.7M Ω .

Single Timer


Characteristics Curve

http://www.SeCoSGmbH.com/


Single Timer

Single Timer

Application Circuit

Application Notes

The application circuit shows astable mode configuration.

Pin 6 (Threshold) is tied to Pin 2 (Trigger) and Pin 4 (Reset) is tied to Vcc (Pin 8). The external capacitor C1 of Pin 6 and Pin 2 charges through RA, RB and discharge through RB only. In the internal circuit of GSCNE555, one input of the upper comparator is at voltage of 2/3Vcc (R1=R2=R3), another input is connected to Pin 6. As soon as C1 is charging to higher than 2/3Vcc, transistor Q1 is turned ON and discharge C1 to collector voltage of transistor Q1. Therefore, the flip-flop circuit is reset and output is low. One input of lower comparator is at voltage of 1/3Vcc, discharge transistor Q1 turn off and C1 charges through RA and RB. Therefore, flip-flop circuit is set output high.

That is, when C1 charges through RA and RB, output is high and when C1 discharge through RB, output is low. The charge time (output is high) t1 is 0.693 (RA+RB) C1 and the discharge time (output is low) T2 is 0.693RB*C1.

$$\ln\left(\frac{\operatorname{Vcc}-\frac{1}{3}\operatorname{Vcc}}{\operatorname{Vcc}-\frac{2}{3}\operatorname{Vcc}}\right) = 0.693$$

Thus the total period time T is given by

T1=0.693*(RA+RB)*C1 T2=0.693*RB*C1

T=T1+T2=0.693(RA+2RB)*C1

Then the frequency of astable mode is given by

$$f = \frac{1}{T} = \frac{1.44}{(RA+2RB)*C1}$$

The duty cycle is given by

$$D.C. = \frac{T2}{T} = \frac{RB}{RA+2RB}$$

http://www.SeCoSGmbH.com/

Any changing of specification will not be informed individual